Coulomb Shapes: Using Electrostatic Forces for Deformation-invariant Shape Representation

نویسندگان

  • Davide Boscaini
  • Ramunas Girdziusas
  • Michael M. Bronstein
چکیده

Canonical shape analysis is a popular method in deformable shape matching, trying to bring the shape into a canonical form that undoes its non-rigid deformations, thus reducing the problem of non-rigid matching into a rigid one. The canonization can be performed by measuring geodesic distances between all pairs of points on the shape and embedding them into a Euclidean space by means of multidimensional scaling (MDS), which reduces the intrinsic isometries of the shape into the extrinsic (Euclidean) isometries of the embedding space. A notable drawback of MDS-based canonical forms is their sensitivity to topological noise: different shape connectivity can affect dramatically the geodesic distances, resulting in a global distortion of the canonical form. In this paper, we propose a different shape canonization approach based on a physical model of electrostatic repulsion. We minimize the Coulomb energy subject to the local distance constraints between adjacent shape vertices. Our model naturally handles topological noise, allowing to ‘tear’ the shape at points of strong repulsion. Furthermore, the problem is computationally efficient, as it lends itself to fast multipole methods. We show experimental results in which our method compares favorably to MDS-based canonical forms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape-Based Image Retrieval Using Shape Matrix

Retrieval image by shape similarity, given a template shape is particularly challenging, owning to the difficulty to derive a similarity measurement that closely conforms to the common perception of similarity by humans. In this paper, a new method for the representation and comparison of shapes is present which is based on the shape matrix and snake model. It is scaling, rotation, translation ...

متن کامل

Isometric deformation invariant 3D shape recognition

Intra-shape deformations complicate 3D shape recognition and therefore need proper modeling. Thereto, an isometric deformation model is used in this paper. The method proposed does not need explicit point correspondences for the comparison of 3D shapes. The geodesic distance matrix is used as an isometry-invariant shape representation. Two approaches are described to arrive at a sampling order ...

متن کامل

Analysis of Flow Pattern with Low Reynolds Number around Different Shapes of Bridge Piers, and Determination of Hydrodynamic Forces, using Open Foam Software

In many cases, a set of obstacles, such as bridge piers and abutments, are located in the river waterway. Bridge piers disrupt river’s normal flow, and the created turbulence and disturbance causes diversion of flow lines and creates rotational flow. Geometric shape and position of the piers with respect to flow direction and also number of piers and their spacing are effective on changing the ...

متن کامل

Laplace-Beltrami eigenfunctions for deformation invariant shape representation

A deformation invariant representation of surfaces, the GPS embedding, is introduced using the eigenvalues and eigenfunctions of the Laplace-Beltrami differential operator. Notably, since the definition of the GPS embedding completely avoids the use of geodesic distances, and is based on objects of global character, the obtained representation is robust to local topology changes. The GPS embedd...

متن کامل

Yukawa-Field Approximation of Electrostatic Free Energy and Dielectric Boundary Force.

A Yukawa-field approximation of the electrostatic free energy of a molecular solvation system with an implicit or continuum solvent is constructed. It is argued through the analysis of model molecular systems with spherically symmetric geometries that such an approximation is rational. The construction extends non-trivially that of the Coulomb-field approximation which serves as a basis of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014